Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires.

نویسندگان

  • Scott W Finefrock
  • Genqiang Zhang
  • Je-Hyeong Bahk
  • Haiyu Fang
  • Haoran Yang
  • Ali Shakouri
  • Yue Wu
چکیده

Solution-synthesized thermoelectric nanostructured materials have the potential to have lower cost and higher performance than materials synthesized by solid-state methods. Herein we present the synthesis of ultrathin PbTe nanowires, which are compressed by spark plasma sintering at various temperatures in the range of 405-500 °C. The resulting discs possess grains with sizes of 5-30 μm as well as grains with sizes on the order of the original 12 nm diameter PbTe nanowires. This micro- and nanostructure leads to a significantly reduced thermal conductivity compared to bulk PbTe. Careful electron transport analysis shows suppressed electrical conductivity due to increased short-range and ionized defect scatterings, while the Seebeck coefficient remains comparable to the bulk value. The PbTe nanowire samples are found unintentionally p-type doped to hole concentrations of 2.16-2.59 × 10(18) cm(-3). The maximum figure of merit achieved in the unintentionally doped spark plasma sintered PbTe nanowires is 0.33 at 350 K, which is among the highest reported for unintentionally doped PbTe at low temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties.

A rational yet scalable solution phase method has been established, for the first time, to obtain n-type Bi(2)Te(3) ultrathin nanowires with an average diameter of 8 nm in high yield (up to 93%). Thermoelectric properties of bulk pellets fabricated by compressing the nanowire powder through spark plasma sintering have been investigated. Compared to the current commercial n-type Bi(2)Te(3)-based...

متن کامل

Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires.

The large thermal conductivity of bulk complex metal oxides such as SrTiO(3), NaCo(2)O(4), and Ca(3)Co(4)O(9) has set a barrier for the improvement of thermoelectric figure of merit and the applications of these materials in high temperature (≥1000 K) thermoelectric energy harvesting and solid-state cooling. Here, we present a self-templated synthesis approach to grow ultrathin SrTiO(3) nanowir...

متن کامل

Optimization of Sintering Temperature for Maximizing Dimensionless Figure of Merit of La-Doped Strontium Titanate Thermoelectric Material in the Combination of Combustion Synthesis with Post Spark Plasma Sintering

This paper describes thermoelectric properties of La-doped SrTiO3 prepared by using a combination of combustion synthesis (CS) with post spark plasma sintering (SPS), on which effects of sintering temperature were mainly examined. In experimental, combustion-synthesized (CSed) samples (Sr1 xLaxTiO3, x 1⁄4 0:08) were spark-plasma-sintered (SPSed) at temperatures from 1513 to 1663K and the thermo...

متن کامل

Transport properties of single-crystalline n-type semiconducting PbTe nanowires.

Single-crystalline PbTe nanowires were synthesized using the chemical vapor transport method. They consisted of rock-salt structure PbTe nanocrystals uniformly grown in the [100] direction. We fabricated field-effect transistors using a single PbTe nanowire, providing evidence for its intrinsic n-type semiconductor characteristics. The values of the carrier mobility and concentration were estim...

متن کامل

Thermoelectric properties of superlattice nanowires

We report here on a theoretical model for the electronic structure and transport properties of superlattice nanowires, considering their cylindrical wire boundary and multiple anisotropic carrier pockets. The thermoelectric properties of superlattice nanowires made of various lead salts ~PbS, PbSe, and PbTe! are investigated as a function of the segment length, wire diameter, crystal orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2014